博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
用guava快速打造两级缓存能力
阅读量:4968 次
发布时间:2019-06-12

本文共 44643 字,大约阅读时间需要 148 分钟。

  首先,咱们都有一共识,即可以使用缓存来提升系统的访问速度!

  现如今,分布式缓存这么强大,所以,大部分时候,我们可能都不会去关注本地缓存了!

  而在一起高并发的场景,如果我们一味使用nosql式的缓存,如 redis, 那么也是好的吧!

  但是有个问题我们得考虑下: redis 这样的缓存是快,但是它总有自己的瓶颈吧,如果什么东西我们都往里面存储,则在高并发场景下,应用瓶颈将受限于其缓存瓶颈吧!

  所以,针对这种问题,在一些场景下,咱们可以使用本地缓存来存储一些数据,从而避免每次都将请求击穿到 redis 层面!

  本文考虑的是使用 本地缓存 作为二级缓存存在,而非直接的充当缓存工具!  

而使用本地缓存,则有几个讲究:

  1. 缓存一致性问题;

  2. 并发安全问题;

  所谓缓存一致性问题,就是本地缓存,是否和redis等缓存中间件的数据保持一致,如果不一致的表现超过了可接受的程度,则要这访问速度也就没啥意义了!

  所谓并发安全问题,即是,当使用本地缓存时,本地的缓存访问线程安全性问题,如果出现错乱情况,则严重了!

使用本地缓存,有什么好处?

  1. 减少访问远程缓存的网络io,速度自然是要提升的;

  2. 减少远程缓存的并发请求,从而表现出更大的并发处理能力;

本地缓存,都有什么应用场景?

  1. 单机部署的应用咱们就不说了;

  2. 读多写少的场景;(这也缓存的应用场景)
  3. 可以容忍一定时间内的缓存不一致; (因涉及的本地缓存,分布式机器结果必可能不一致)
  4. 应用对缓存的请求量非常大的场景; (如果直接打到redis缓存, 则redis压力巨大, 且应用响应速度将变慢)

  所以,如果自己存在这样的使用场景,不防也考虑下,如何使用这本地缓存,来提升响应速度吧!

如果要求自己来实现这两级缓存功能,我想应该也是不能的!只要解决掉两个问题即可:

  1. 缓存过期策略;

  2. 缓存安全性;

其中一最简单直接的方式,就是使用一个定时刷新缓存的线程,在时间节点到达后,将缓存删除即可; 另一个安全问题,则可以使用 synchronized 或 并发包下的锁工具来实现即可。

  但是真正做起来,可能不一定会简单,这也不是咱们想特别考虑的。

  咱们主要看下 guava 是如何来解决这种问题的?以其思路来开拓自己的设想!

如何 guava 来作为我们的二级缓存?

  1. 首先,咱们得引入 guava 的依赖

com.google.guava
guava
18.0

  2. 创建guava缓存;

   首先,创建的guava缓存实例,应是全局共用的,否则就失去了缓存的意义;

  其次,一些过期参数,应支持配置化;

  例子如下:

@Component@Slf4jpublic class LocalEnhancedCacheHolder {    @Value("${guava.cache.max.size}")    private Integer maxCacheSize;    @Value("${guava.cache.timeout}")    private Integer guavaCacheTimeout;    /**     * 字符串类型取值, k->v 只支持字符串存取,避免复杂化     */    private LoadingCache
stringDbCacheContainer; /** * hash 数据缓存, 展示使用多key 作为 guava 的缓存key */ private LoadingCache
hashDbCacheContainer; @Resource private RedisTemplate redisTemplate; /** * 值为空 字符串标识 */ public static final String EMPTY_VALUE_STRING = ""; /** * 值为空 字节标识 */ public static final byte[] EMPTY_VALUE_BYTES = new byte[0]; @PostConstruct public void init() { Integer dbCount = 2; stringDbCacheContainer = CacheBuilder.newBuilder() .expireAfterWrite(guavaCacheTimeout, TimeUnit.SECONDS) .maximumSize(maxCacheSize) .build(new CacheLoader
() { @Override public String load(String key) throws Exception { log.info("【缓存】从redis获取配置:{}", key); String value = redisTemplate.get(key); return StringUtils.defaultIfBlank(value, EMPTY_VALUE_STRING); } }); hashDbCacheContainer = CacheBuilder.newBuilder() .expireAfterWrite(guavaCacheTimeout, TimeUnit.SECONDS) .maximumSize(maxCacheSize / dbCount) .build(new CacheLoader
() { @Override public byte[] load(HashDbItemEntry keyHolder) throws Exception { log.info("【缓存】从redis获取配置:{}", keyHolder); byte[] valueBytes = redisTemplate.hgetValue( keyHolder.getBucketKey(), keyHolder.getSlotKey()); if(valueBytes == null) { valueBytes = EMPTY_VALUE_BYTES; } return valueBytes; } }); } /** * 获取k-v中的缓存值 * * @param key 键 * @return 缓存值,没有值时,返回 null */ public String getCache(String key) { try { return stringDbCacheContainer.get(key); } catch (ExecutionException e) { log.error("【缓存】获取缓存异常:{}, ex:{}", key, e); throw new RuntimeException(e); } } /** * 放入缓存,此处暂只实现为向redis写入值 * * @param key 缓存key * @param value 缓存value */ public void putCache(String key, String value) { redisTemplate.set(key, value, 0L); } /** * 放入缓存带超时时间设置,此处暂只实现为向redis写入值 * * @param key 缓存key * @param value 缓存value * @param timeout 超时时间,单位 s */ public void putCache(String key, String value, Long timeout) { redisTemplate.set(key, value, timeout); } /** * 删除单个kv缓存 * * @param key 缓存键 */ public void removeCache(String key) { redisTemplate.remove(key); } /** * 批量删除单个kv缓存 * * @param keyList 缓存键 列表,以 管道形式删除,性能更高 */ public void removeCache(Collection
keyList) { redisTemplate.remove(keyList); } /** * 从hash数据库中获取缓存值 * * @param bucketKey 桶key, 对应一系列值 k->v * @param slotKey 槽key, 对应具体的缓存值 * @return 缓存值 */ public byte[] getCacheFromHash(String bucketKey, String slotKey) { HashDbItemEntry entry = new HashDbItemEntry(bucketKey, slotKey); try { return hashDbCacheContainer.get(entry); } catch (ExecutionException e) { log.error("【缓存】获取缓存异常:{}, ex:{}", entry, e); throw new RuntimeException(e); } } /** * hash 数据结构存储 * * value 暂不存储相应值,只做查询使用 */ class HashDbItemEntry { private String bucketKey; private String slotKey; private Object value; public HashDbItemEntry(String bucketKey, String slotKey) { this.bucketKey = bucketKey; this.slotKey = slotKey; } public String getBucketKey() { return bucketKey; } public String getSlotKey() { return slotKey; } public Object getValue() { return value; } // 必重写 equals & hashCode, 否则缓存将无法复用 @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; HashDbItemEntry that = (HashDbItemEntry) o; return Objects.equals(bucketKey, that.bucketKey) && Objects.equals(slotKey, that.slotKey) && Objects.equals(value, that.value); } @Override public int hashCode() { return Objects.hash(bucketKey, slotKey, value); } @Override public String toString() { return "HashDbItemEntry{" + "bucketKey='" + bucketKey + '\'' + ", slotKey='" + slotKey + '\'' + ", value=" + value + '}'; } }}

  如上例子,展示了两种缓存,一种是 简单的 string -> string 的缓存, 另一种是 (string, string) -> byte[] 的缓存; 不管怎么样,只是想说明,缓存的方式有多种!

  我们就以简单的 string -> string 来说明吧!

stringDbCacheContainer = CacheBuilder.newBuilder()                .expireAfterWrite(guavaCacheTimeout, TimeUnit.SECONDS)                .maximumSize(maxCacheSize)                .build(new CacheLoader
() { @Override public String load(String key) throws Exception { log.info("【缓存】从redis获取配置:{}", key); String value = redisTemplate.get(key); return StringUtils.defaultIfBlank(value, EMPTY_VALUE_STRING); } });

  如上,咱们创建了一个缓存容器,它的最大容量是 maxCacheSize, 且每个key将在 guavaCacheTimeout 后过期, 过期后将从 redisTemplate 中获取数据!

  如上,一个完整的 两级缓存组件就完成了,你大可以直接在项目进行相应的操作了!是不是很简单?

 

深入理解guava 二级缓存原理?

  1. CacheBuilder 是如何创建的?

@GwtCompatible(emulated = true)public final class CacheBuilder
{ private static final int DEFAULT_INITIAL_CAPACITY = 16; private static final int DEFAULT_CONCURRENCY_LEVEL = 4; private static final int DEFAULT_EXPIRATION_NANOS = 0; private static final int DEFAULT_REFRESH_NANOS = 0; static final Supplier
NULL_STATS_COUNTER = Suppliers.ofInstance( new StatsCounter() { @Override public void recordHits(int count) {} @Override public void recordMisses(int count) {} @Override public void recordLoadSuccess(long loadTime) {} @Override public void recordLoadException(long loadTime) {} @Override public void recordEviction() {} @Override public CacheStats snapshot() { return EMPTY_STATS; } }); static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0); static final Supplier
CACHE_STATS_COUNTER = new Supplier
() { @Override public StatsCounter get() { return new SimpleStatsCounter(); } }; enum NullListener implements RemovalListener
{ INSTANCE; @Override public void onRemoval(RemovalNotification
notification) {} } enum OneWeigher implements Weigher
{ INSTANCE; @Override public int weigh(Object key, Object value) { return 1; } } static final Ticker NULL_TICKER = new Ticker() { @Override public long read() { return 0; } }; private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName()); static final int UNSET_INT = -1; boolean strictParsing = true; int initialCapacity = UNSET_INT; int concurrencyLevel = UNSET_INT; long maximumSize = UNSET_INT; long maximumWeight = UNSET_INT; Weigher
weigher; Strength keyStrength; Strength valueStrength; long expireAfterWriteNanos = UNSET_INT; long expireAfterAccessNanos = UNSET_INT; long refreshNanos = UNSET_INT; Equivalence
keyEquivalence; Equivalence valueEquivalence; RemovalListener
removalListener; Ticker ticker; Supplier
statsCounterSupplier = NULL_STATS_COUNTER; // TODO(fry): make constructor private and update tests to use newBuilder CacheBuilder() {} /** * Constructs a new { @code CacheBuilder} instance with default settings, including strong keys, * strong values, and no automatic eviction of any kind. */ public static CacheBuilder
newBuilder() { return new CacheBuilder
(); } /** * Sets the minimum total size for the internal hash tables. For example, if the initial capacity * is { @code 60}, and the concurrency level is { @code 8}, then eight segments are created, each * having a hash table of size eight. Providing a large enough estimate at construction time * avoids the need for expensive resizing operations later, but setting this value unnecessarily * high wastes memory. * * @throws IllegalArgumentException if { @code initialCapacity} is negative * @throws IllegalStateException if an initial capacity was already set */ public CacheBuilder
initialCapacity(int initialCapacity) { checkState(this.initialCapacity == UNSET_INT, "initial capacity was already set to %s", this.initialCapacity); checkArgument(initialCapacity >= 0); this.initialCapacity = initialCapacity; return this; } int getInitialCapacity() { return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity; } /** * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The * table is internally partitioned to try to permit the indicated number of concurrent updates * without contention. Because assignment of entries to these partitions is not necessarily * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to * accommodate as many threads as will ever concurrently modify the table. Using a significantly * higher value than you need can waste space and time, and a significantly lower value can lead * to thread contention. But overestimates and underestimates within an order of magnitude do not * usually have much noticeable impact. A value of one permits only one thread to modify the cache * at a time, but since read operations and cache loading computations can proceed concurrently, * this still yields higher concurrency than full synchronization. * *

Defaults to 4. Note:The default may change in the future. If you care about this * value, you should always choose it explicitly. * *

The current implementation uses the concurrency level to create a fixed number of hashtable * segments, each governed by its own write lock. The segment lock is taken once for each explicit * write, and twice for each cache loading computation (once prior to loading the new value, * and once after loading completes). Much internal cache management is performed at the segment * granularity. For example, access queues and write queues are kept per segment when they are * required by the selected eviction algorithm. As such, when writing unit tests it is not * uncommon to specify { @code concurrencyLevel(1)} in order to achieve more deterministic eviction * behavior. * *

Note that future implementations may abandon segment locking in favor of more advanced * concurrency controls. * * @throws IllegalArgumentException if { @code concurrencyLevel} is nonpositive * @throws IllegalStateException if a concurrency level was already set */ public CacheBuilder

concurrencyLevel(int concurrencyLevel) { checkState(this.concurrencyLevel == UNSET_INT, "concurrency level was already set to %s", this.concurrencyLevel); checkArgument(concurrencyLevel > 0); this.concurrencyLevel = concurrencyLevel; return this; } int getConcurrencyLevel() { return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel; } /** * Specifies the maximum number of entries the cache may contain. Note that the cache
may evict * an entry before this limit is exceeded. As the cache size grows close to the maximum, the * cache evicts entries that are less likely to be used again. For example, the cache may evict an * entry because it hasn't been used recently or very often. * *

When { @code size} is zero, elements will be evicted immediately after being loaded into the * cache. This can be useful in testing, or to disable caching temporarily without a code change. * *

This feature cannot be used in conjunction with { @link #maximumWeight}. * * @param size the maximum size of the cache * @throws IllegalArgumentException if { @code size} is negative * @throws IllegalStateException if a maximum size or weight was already set */ public CacheBuilder

maximumSize(long size) { checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize); checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s", this.maximumWeight); checkState(this.weigher == null, "maximum size can not be combined with weigher"); checkArgument(size >= 0, "maximum size must not be negative"); this.maximumSize = size; return this; } /** * Specifies the maximum weight of entries the cache may contain. Weight is determined using the * { @link Weigher} specified with { @link #weigher}, and use of this method requires a * corresponding call to { @link #weigher} prior to calling { @link #build}. * *

Note that the cache may evict an entry before this limit is exceeded. As the cache * size grows close to the maximum, the cache evicts entries that are less likely to be used * again. For example, the cache may evict an entry because it hasn't been used recently or very * often. * *

When { @code weight} is zero, elements will be evicted immediately after being loaded into * cache. This can be useful in testing, or to disable caching temporarily without a code * change. * *

Note that weight is only used to determine whether the cache is over capacity; it has no * effect on selecting which entry should be evicted next. * *

This feature cannot be used in conjunction with { @link #maximumSize}. * * @param weight the maximum total weight of entries the cache may contain * @throws IllegalArgumentException if { @code weight} is negative * @throws IllegalStateException if a maximum weight or size was already set * @since 11.0 */ @GwtIncompatible("To be supported") public CacheBuilder

maximumWeight(long weight) { checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s", this.maximumWeight); checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize); this.maximumWeight = weight; checkArgument(weight >= 0, "maximum weight must not be negative"); return this; } /** * Specifies the weigher to use in determining the weight of entries. Entry weight is taken * into consideration by { @link #maximumWeight(long)} when determining which entries to evict, and * use of this method requires a corresponding call to { @link #maximumWeight(long)} prior to * calling { @link #build}. Weights are measured and recorded when entries are inserted into the * cache, and are thus effectively static during the lifetime of a cache entry. * *

When the weight of an entry is zero it will not be considered for size-based eviction * (though it still may be evicted by other means). * *

Important note: Instead of returning this as a { @code CacheBuilder} * instance, this method returns { @code CacheBuilder

}. From this point on, either the * original reference or the returned reference may be used to complete configuration and build * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from * building caches whose key or value types are incompatible with the types accepted by the * weigher already provided; the { @code CacheBuilder} type cannot do this. For best results, * simply use the standard method-chaining idiom, as illustrated in the documentation at top, * configuring a { @code CacheBuilder} and building your { @link Cache} all in a single statement. * *

Warning: if you ignore the above advice, and use this { @code CacheBuilder} to build * a cache whose key or value type is incompatible with the weigher, you will likely experience * a { @link ClassCastException} at some undefined point in the future. * * @param weigher the weigher to use in calculating the weight of cache entries * @throws IllegalArgumentException if { @code size} is negative * @throws IllegalStateException if a maximum size was already set * @since 11.0 */ @GwtIncompatible("To be supported") public

CacheBuilder
weigher( Weigher
weigher) { checkState(this.weigher == null); if (strictParsing) { checkState(this.maximumSize == UNSET_INT, "weigher can not be combined with maximum size", this.maximumSize); } // safely limiting the kinds of caches this can produce @SuppressWarnings("unchecked") CacheBuilder
me = (CacheBuilder
) this; me.weigher = checkNotNull(weigher); return me; } // Make a safe contravariant cast now so we don't have to do it over and over. @SuppressWarnings("unchecked")
Weigher
getWeigher() { return (Weigher
) MoreObjects.firstNonNull(weigher, OneWeigher.INSTANCE); } /** * Specifies that each entry should be automatically removed from the cache once a fixed duration * has elapsed after the entry's creation, or the most recent replacement of its value. * *

When { @code duration} is zero, this method hands off to * { @link #maximumSize(long) maximumSize}{ @code (0)}, ignoring any otherwise-specificed maximum * size or weight. This can be useful in testing, or to disable caching temporarily without a code * change. * *

Expired entries may be counted in { @link Cache#size}, but will never be visible to read or * write operations. Expired entries are cleaned up as part of the routine maintenance described * in the class javadoc. * * @param duration the length of time after an entry is created that it should be automatically * removed * @param unit the unit that { @code duration} is expressed in * @throws IllegalArgumentException if { @code duration} is negative * @throws IllegalStateException if the time to live or time to idle was already set */ public CacheBuilder

expireAfterWrite(long duration, TimeUnit unit) { checkState(expireAfterWriteNanos == UNSET_INT, "expireAfterWrite was already set to %s ns", expireAfterWriteNanos); checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); this.expireAfterWriteNanos = unit.toNanos(duration); return this; } long getExpireAfterWriteNanos() { return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos; } /** * Specifies that each entry should be automatically removed from the cache once a fixed duration * has elapsed after the entry's creation, the most recent replacement of its value, or its last * access. Access time is reset by all cache read and write operations (including * { @code Cache.asMap().get(Object)} and { @code Cache.asMap().put(K, V)}), but not by operations * on the collection-views of { @link Cache#asMap}. * *

When { @code duration} is zero, this method hands off to * { @link #maximumSize(long) maximumSize}{ @code (0)}, ignoring any otherwise-specificed maximum * size or weight. This can be useful in testing, or to disable caching temporarily without a code * change. * *

Expired entries may be counted in { @link Cache#size}, but will never be visible to read or * write operations. Expired entries are cleaned up as part of the routine maintenance described * in the class javadoc. * * @param duration the length of time after an entry is last accessed that it should be * automatically removed * @param unit the unit that { @code duration} is expressed in * @throws IllegalArgumentException if { @code duration} is negative * @throws IllegalStateException if the time to idle or time to live was already set */ public CacheBuilder

expireAfterAccess(long duration, TimeUnit unit) { checkState(expireAfterAccessNanos == UNSET_INT, "expireAfterAccess was already set to %s ns", expireAfterAccessNanos); checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); this.expireAfterAccessNanos = unit.toNanos(duration); return this; } long getExpireAfterAccessNanos() { return (expireAfterAccessNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterAccessNanos; } /** * Specifies that active entries are eligible for automatic refresh once a fixed duration has * elapsed after the entry's creation, or the most recent replacement of its value. The semantics * of refreshes are specified in { @link LoadingCache#refresh}, and are performed by calling * { @link CacheLoader#reload}. * *

As the default implementation of { @link CacheLoader#reload} is synchronous, it is * recommended that users of this method override { @link CacheLoader#reload} with an asynchronous * implementation; otherwise refreshes will be performed during unrelated cache read and write * operations. * *

Currently automatic refreshes are performed when the first stale request for an entry * occurs. The request triggering refresh will make a blocking call to { @link CacheLoader#reload} * and immediately return the new value if the returned future is complete, and the old value * otherwise. * *

Note: all exceptions thrown during refresh will be logged and then swallowed. * * @param duration the length of time after an entry is created that it should be considered * stale, and thus eligible for refresh * @param unit the unit that { @code duration} is expressed in * @throws IllegalArgumentException if { @code duration} is negative * @throws IllegalStateException if the refresh interval was already set * @since 11.0 */ @Beta @GwtIncompatible("To be supported (synchronously).") public CacheBuilder

refreshAfterWrite(long duration, TimeUnit unit) { checkNotNull(unit); checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos); checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit); this.refreshNanos = unit.toNanos(duration); return this; } long getRefreshNanos() { return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos; } /** * Specifies a nanosecond-precision time source for use in determining when entries should be * expired. By default, { @link System#nanoTime} is used. * *

The primary intent of this method is to facilitate testing of caches which have been * configured with { @link #expireAfterWrite} or { @link #expireAfterAccess}. * * @throws IllegalStateException if a ticker was already set */ public CacheBuilder

ticker(Ticker ticker) { checkState(this.ticker == null); this.ticker = checkNotNull(ticker); return this; } Ticker getTicker(boolean recordsTime) { if (ticker != null) { return ticker; } return recordsTime ? Ticker.systemTicker() : NULL_TICKER; } /** * Specifies a listener instance that caches should notify each time an entry is removed for any * { @linkplain RemovalCause reason}. Each cache created by this builder will invoke this listener * as part of the routine maintenance described in the class documentation above. * *

Warning: after invoking this method, do not continue to use this cache * builder reference; instead use the reference this method returns. At runtime, these * point to the same instance, but only the returned reference has the correct generic type * information so as to ensure type safety. For best results, use the standard method-chaining * idiom illustrated in the class documentation above, configuring a builder and building your * cache in a single statement. Failure to heed this advice can result in a { @link * ClassCastException} being thrown by a cache operation at some undefined point in the * future. * *

Warning: any exception thrown by { @code listener} will not be propagated to * the { @code Cache} user, only logged via a { @link Logger}. * * @return the cache builder reference that should be used instead of { @code this} for any * remaining configuration and cache building * @throws IllegalStateException if a removal listener was already set */ @CheckReturnValue public

CacheBuilder
removalListener( RemovalListener
listener) { checkState(this.removalListener == null); // safely limiting the kinds of caches this can produce @SuppressWarnings("unchecked") CacheBuilder
me = (CacheBuilder
) this; me.removalListener = checkNotNull(listener); return me; } // Make a safe contravariant cast now so we don't have to do it over and over. @SuppressWarnings("unchecked")
RemovalListener
getRemovalListener() { return (RemovalListener
) MoreObjects.firstNonNull(removalListener, NullListener.INSTANCE); } /** * Enable the accumulation of { @link CacheStats} during the operation of the cache. Without this * { @link Cache#stats} will return zero for all statistics. Note that recording stats requires * bookkeeping to be performed with each operation, and thus imposes a performance penalty on * cache operation. * * @since 12.0 (previously, stats collection was automatic) */ public CacheBuilder
recordStats() { statsCounterSupplier = CACHE_STATS_COUNTER; return this; } boolean isRecordingStats() { return statsCounterSupplier == CACHE_STATS_COUNTER; } Supplier
getStatsCounterSupplier() { return statsCounterSupplier; } /** * Builds a cache, which either returns an already-loaded value for a given key or atomically * computes or retrieves it using the supplied { @code CacheLoader}. If another thread is currently * loading the value for this key, simply waits for that thread to finish and returns its * loaded value. Note that multiple threads can concurrently load values for distinct keys. * *

This method does not alter the state of this { @code CacheBuilder} instance, so it can be * invoked again to create multiple independent caches. * * @param loader the cache loader used to obtain new values * @return a cache having the requested features */ public

LoadingCache
build( CacheLoader
loader) { checkWeightWithWeigher(); return new LocalCache.LocalLoadingCache
(this, loader); } /** * Builds a cache which does not automatically load values when keys are requested. * *

Consider { @link #build(CacheLoader)} instead, if it is feasible to implement a * { @code CacheLoader}. * *

This method does not alter the state of this { @code CacheBuilder} instance, so it can be * invoked again to create multiple independent caches. * * @return a cache having the requested features * @since 11.0 */ public

Cache
build() { checkWeightWithWeigher(); checkNonLoadingCache(); return new LocalCache.LocalManualCache
(this); }}

  如上,使用建造者模式创建 LoadingCache<K, V> 缓存; 设置好 最大值,过期时间等参数;

  2. 如何获取一个guava缓存?

  其实就是一个get方法而已! stringDbCacheContainer.get(key);

// com.google.common.cache.LocalCache    // LoadingCache methods    @Override    public V get(K key) throws ExecutionException {        // 两种数据来源,一是直接获取,二是调用 load() 方法加载数据      return localCache.getOrLoad(key);    }    // com.google.common.cache.LocalCache  V getOrLoad(K key) throws ExecutionException {    return get(key, defaultLoader);  }  V get(K key, CacheLoader
loader) throws ExecutionException { int hash = hash(checkNotNull(key)); // 还记得 ConcurrentHashMap 吗? 先定位segment, 再定位 entry return segmentFor(hash).get(key, hash, loader); } Segment
segmentFor(int hash) { // TODO(fry): Lazily create segments? return segments[(hash >>> segmentShift) & segmentMask]; } // 核心取数逻辑在此get 中 // loading V get(K key, int hash, CacheLoader
loader) throws ExecutionException { checkNotNull(key); checkNotNull(loader); try { if (count != 0) { // read-volatile // don't call getLiveEntry, which would ignore loading values ReferenceEntry
e = getEntry(key, hash); if (e != null) { // 如果存在值,则依据 ticker 进行判断是否过期,从而直接返回值,具体过期逻辑稍后再说 long now = map.ticker.read(); V value = getLiveValue(e, now); if (value != null) { recordRead(e, now); statsCounter.recordHits(1); return scheduleRefresh(e, key, hash, value, now, loader); } ValueReference
valueReference = e.getValueReference(); if (valueReference.isLoading()) { return waitForLoadingValue(e, key, valueReference); } } } // 初次加载或过期之后,进入加载逻辑,重要 // at this point e is either null or expired; return lockedGetOrLoad(key, hash, loader); } catch (ExecutionException ee) { Throwable cause = ee.getCause(); if (cause instanceof Error) { throw new ExecutionError((Error) cause); } else if (cause instanceof RuntimeException) { throw new UncheckedExecutionException(cause); } throw ee; } finally { postReadCleanup(); } } // static class Segment
extends ReentrantLock // 整个 Segment 继承了 ReentrantLock, 所以 LocalCache 的锁是依赖于 ReentrantLock 实现的 V lockedGetOrLoad(K key, int hash, CacheLoader
loader) throws ExecutionException { ReferenceEntry
e; ValueReference
valueReference = null; LoadingValueReference
loadingValueReference = null; boolean createNewEntry = true; lock(); try { // re-read ticker once inside the lock long now = map.ticker.read(); // 在更新值前,先把过期数据清除 preWriteCleanup(now); int newCount = this.count - 1; AtomicReferenceArray
> table = this.table; int index = hash & (table.length() - 1); ReferenceEntry
first = table.get(index); // 处理 hash 碰撞时的链表查询 for (e = first; e != null; e = e.getNext()) { K entryKey = e.getKey(); if (e.getHash() == hash && entryKey != null && map.keyEquivalence.equivalent(key, entryKey)) { valueReference = e.getValueReference(); if (valueReference.isLoading()) { createNewEntry = false; } else { V value = valueReference.get(); if (value == null) { enqueueNotification(entryKey, hash, valueReference, RemovalCause.COLLECTED); } else if (map.isExpired(e, now)) { // This is a duplicate check, as preWriteCleanup already purged expired // entries, but let's accomodate an incorrect expiration queue. enqueueNotification(entryKey, hash, valueReference, RemovalCause.EXPIRED); } else { recordLockedRead(e, now); statsCounter.recordHits(1); // we were concurrent with loading; don't consider refresh return value; } // immediately reuse invalid entries writeQueue.remove(e); accessQueue.remove(e); this.count = newCount; // write-volatile } break; } } // 如果是第一次加载,则先创建 Entry, 进入 load() 逻辑 if (createNewEntry) { loadingValueReference = new LoadingValueReference
(); if (e == null) { e = newEntry(key, hash, first); e.setValueReference(loadingValueReference); table.set(index, e); } else { e.setValueReference(loadingValueReference); } } } finally { unlock(); postWriteCleanup(); } if (createNewEntry) { try { // Synchronizes on the entry to allow failing fast when a recursive load is // detected. This may be circumvented when an entry is copied, but will fail fast most // of the time. // 同步加载数据源值, 从 loader 中处理 synchronized (e) { return loadSync(key, hash, loadingValueReference, loader); } } finally { // 记录未命中计数,默认为空 statsCounter.recordMisses(1); } } else { // The entry already exists. Wait for loading. // 如果有线程正在更新缓存,则等待结果即可,具体实现就是调用 Future.get() return waitForLoadingValue(e, key, valueReference); } } // 加载原始值 // at most one of loadSync.loadAsync may be called for any given LoadingValueReference V loadSync(K key, int hash, LoadingValueReference
loadingValueReference, CacheLoader
loader) throws ExecutionException { // loadingValueReference中保存了回调引用,加载原始值 ListenableFuture
loadingFuture = loadingValueReference.loadFuture(key, loader); // 存储数据入缓存,以便下次使用 return getAndRecordStats(key, hash, loadingValueReference, loadingFuture); } // 从 loader 中加载数据, public ListenableFuture
loadFuture(K key, CacheLoader
loader) { stopwatch.start(); V previousValue = oldValue.get(); try { // 如果原来没有值,则直接加载后返回 if (previousValue == null) { V newValue = loader.load(key); return set(newValue) ? futureValue : Futures.immediateFuture(newValue); } // 否则一般为无过期时间的数据进行 reload, 如果 reload() 的结果为空,则直接返回 // 须重写 reload() 实现 ListenableFuture
newValue = loader.reload(key, previousValue); if (newValue == null) { return Futures.immediateFuture(null); } // To avoid a race, make sure the refreshed value is set into loadingValueReference // *before* returning newValue from the cache query. return Futures.transform(newValue, new Function
() { @Override public V apply(V newValue) { LoadingValueReference.this.set(newValue); return newValue; } }); } catch (Throwable t) { if (t instanceof InterruptedException) { Thread.currentThread().interrupt(); } return setException(t) ? futureValue : fullyFailedFuture(t); } } // com.google.common.util.concurrent.Uninterruptibles /** * Waits uninterruptibly for { @code newValue} to be loaded, and then records loading stats. */ V getAndRecordStats(K key, int hash, LoadingValueReference
loadingValueReference, ListenableFuture
newValue) throws ExecutionException { V value = null; try { // 同步等待加载结果,注意,此处返回值不允许为null, 否则将报异常,这可能是为了规避缓存攻击漏洞吧 value = getUninterruptibly(newValue); if (value == null) { throw new InvalidCacheLoadException("CacheLoader returned null for key " + key + "."); } // 加载成功记录,此处扩展点,默认为空 statsCounter.recordLoadSuccess(loadingValueReference.elapsedNanos()); // 最后将值存入缓存容器中,返回(论hash的重要性) storeLoadedValue(key, hash, loadingValueReference, value); return value; } finally { if (value == null) { statsCounter.recordLoadException(loadingValueReference.elapsedNanos()); removeLoadingValue(key, hash, loadingValueReference); } } } /** * Invokes { @code future.}{ @link Future#get() get()} uninterruptibly. * To get uninterruptibility and remove checked exceptions, see * { @link Futures#getUnchecked}. * *

If instead, you wish to treat { @link InterruptedException} uniformly * with other exceptions, see { @link Futures#get(Future, Class) Futures.get} * or { @link Futures#makeChecked}. * * @throws ExecutionException if the computation threw an exception * @throws CancellationException if the computation was cancelled */ public static

V getUninterruptibly(Future
future) throws ExecutionException { boolean interrupted = false; try { while (true) { try { return future.get(); } catch (InterruptedException e) { interrupted = true; } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } }

  如上,就是获取一个缓存的过程。总结下来就是:

  1. 先使用hash定位到 segment中,然后尝试直接到 map中获取结果;

  2. 如果没有找到或者已过期,则调用客户端的load()方法加载原始数据;
  3. 将结果存入 segment.map 中,本地缓存生效;
  4. 记录命中情况,读取计数;

3. 如何处理过期?

   其实刚刚我们在看get()方法时,就看到了一些端倪。

  要确认两点: 1. 是否有创建异步清理线程进行过期数据清理? 2. 清理过程中,原始数据如何自处?

  其实guava的清理时机是在加载数据之前进行的!

// com.google.common.cache.LocalCache    // static class Segment
extends ReentrantLock // 整个 Segment 继承了 ReentrantLock, 所以 LocalCache 的锁是依赖于 ReentrantLock 实现的 V lockedGetOrLoad(K key, int hash, CacheLoader
loader) throws ExecutionException { ReferenceEntry
e; ValueReference
valueReference = null; LoadingValueReference
loadingValueReference = null; boolean createNewEntry = true; lock(); try { // re-read ticker once inside the lock long now = map.ticker.read(); // 在更新值前,先把过期数据清除 preWriteCleanup(now); int newCount = this.count - 1; AtomicReferenceArray
> table = this.table; int index = hash & (table.length() - 1); ReferenceEntry
first = table.get(index); // 处理 hash 碰撞时的链表查询 for (e = first; e != null; e = e.getNext()) { K entryKey = e.getKey(); if (e.getHash() == hash && entryKey != null && map.keyEquivalence.equivalent(key, entryKey)) { valueReference = e.getValueReference(); if (valueReference.isLoading()) { createNewEntry = false; } else { V value = valueReference.get(); if (value == null) { enqueueNotification(entryKey, hash, valueReference, RemovalCause.COLLECTED); } else if (map.isExpired(e, now)) { // This is a duplicate check, as preWriteCleanup already purged expired // entries, but let's accomodate an incorrect expiration queue. enqueueNotification(entryKey, hash, valueReference, RemovalCause.EXPIRED); } else { recordLockedRead(e, now); statsCounter.recordHits(1); // we were concurrent with loading; don't consider refresh return value; } // immediately reuse invalid entries writeQueue.remove(e); accessQueue.remove(e); this.count = newCount; // write-volatile } break; } } // 如果是第一次加载,则先创建 Entry, 进入 load() 逻辑 if (createNewEntry) { loadingValueReference = new LoadingValueReference
(); if (e == null) { e = newEntry(key, hash, first); e.setValueReference(loadingValueReference); table.set(index, e); } else { e.setValueReference(loadingValueReference); } } } finally { unlock(); postWriteCleanup(); } if (createNewEntry) { try { // Synchronizes on the entry to allow failing fast when a recursive load is // detected. This may be circumvented when an entry is copied, but will fail fast most // of the time. // 同步加载数据源值, 从 loader 中处理 synchronized (e) { return loadSync(key, hash, loadingValueReference, loader); } } finally { // 记录未命中计数,默认为空 statsCounter.recordMisses(1); } } else { // The entry already exists. Wait for loading. return waitForLoadingValue(e, key, valueReference); } } // 我们来细看下 preWriteCleanup(now); 是如何清理过期数据的 /** * Performs routine cleanup prior to executing a write. This should be called every time a * write thread acquires the segment lock, immediately after acquiring the lock. * *

Post-condition: expireEntries has been run. */ @GuardedBy("this") void preWriteCleanup(long now) { runLockedCleanup(now); } void runLockedCleanup(long now) { // 再次确保清理数据时,锁是存在的 if (tryLock()) { try { // 当存在特殊类型数据时,可以先进行清理 drainReferenceQueues(); // 清理过期数据,按时间清理 expireEntries(now); // calls drainRecencyQueue // 读计数清零 readCount.set(0); } finally { unlock(); } } } /** * Drain the key and value reference queues, cleaning up internal entries containing garbage * collected keys or values. */ @GuardedBy("this") void drainReferenceQueues() { if (map.usesKeyReferences()) { drainKeyReferenceQueue(); } if (map.usesValueReferences()) { drainValueReferenceQueue(); } } @GuardedBy("this") void expireEntries(long now) { // 更新最近的访问队列 drainRecencyQueue(); ReferenceEntry

e; // 从头部开始取元素,如果过期就进行清理 // 写队列超时: 清理, 访问队列超时: 清理 while ((e = writeQueue.peek()) != null && map.isExpired(e, now)) { if (!removeEntry(e, e.getHash(), RemovalCause.EXPIRED)) { throw new AssertionError(); } } while ((e = accessQueue.peek()) != null && map.isExpired(e, now)) { if (!removeEntry(e, e.getHash(), RemovalCause.EXPIRED)) { throw new AssertionError(); } } } @Override public ReferenceEntry
peek() { ReferenceEntry
next = head.getNextInAccessQueue(); return (next == head) ? null : next; } // 清理指定类型的元素,如 过期元素 @GuardedBy("this") boolean removeEntry(ReferenceEntry
entry, int hash, RemovalCause cause) { int newCount = this.count - 1; AtomicReferenceArray
> table = this.table; int index = hash & (table.length() - 1); ReferenceEntry
first = table.get(index); for (ReferenceEntry
e = first; e != null; e = e.getNext()) { if (e == entry) { ++modCount; // 调用 removeValueFromChain, 清理具体元素 ReferenceEntry
newFirst = removeValueFromChain( first, e, e.getKey(), hash, e.getValueReference(), cause); newCount = this.count - 1; table.set(index, newFirst); this.count = newCount; // write-volatile return true; } } return false; } @GuardedBy("this") @Nullable ReferenceEntry
removeValueFromChain(ReferenceEntry
first, ReferenceEntry
entry, @Nullable K key, int hash, ValueReference
valueReference, RemovalCause cause) { enqueueNotification(key, hash, valueReference, cause); // 清理两队列 writeQueue.remove(entry); accessQueue.remove(entry); if (valueReference.isLoading()) { valueReference.notifyNewValue(null); return first; } else { return removeEntryFromChain(first, entry); } } @GuardedBy("this") @Nullable ReferenceEntry
removeEntryFromChain(ReferenceEntry
first, ReferenceEntry
entry) { int newCount = count; // 普通情况,则直接返回 next 元素链即可 // 针对有first != entry 的情况,则依次将 first 移动到队尾,然后跳到下一个元素返回 ReferenceEntry
newFirst = entry.getNext(); for (ReferenceEntry
e = first; e != entry; e = e.getNext()) { // 将first链表倒转到 newFirst 尾部 ReferenceEntry
next = copyEntry(e, newFirst); if (next != null) { newFirst = next; } else { removeCollectedEntry(e); newCount--; } } this.count = newCount; return newFirst; }

  到此,我们就完整的看到了一个 key 的过期处理流程了。总结就是:

  1. 在读取的时候,触发清理操作;

  2. 使用 ReentrantLock 来进行线程安全的更新;
  3. 读取计数器清零,元素数量减少;

  3. 怎样主动放入一个缓存?

  这个和普通的map的put方法一样,简单看下即可!

// com.google.common.cache.LocalCache$LocalManualCache    @Override    public void put(K key, V value) {      localCache.put(key, value);    }        // com.google.common.cache.LocalCache  @Override  public V put(K key, V value) {    checkNotNull(key);    checkNotNull(value);    int hash = hash(key);    return segmentFor(hash).put(key, hash, value, false);  }      // com.google.common.cache.LocalCache$Segment    @Nullable    V put(K key, int hash, V value, boolean onlyIfAbsent) {      lock();      try {        long now = map.ticker.read();        preWriteCleanup(now);        int newCount = this.count + 1;        if (newCount > this.threshold) { // ensure capacity          expand();          newCount = this.count + 1;        }        AtomicReferenceArray
> table = this.table; int index = hash & (table.length() - 1); ReferenceEntry
first = table.get(index); // Look for an existing entry. for (ReferenceEntry
e = first; e != null; e = e.getNext()) { K entryKey = e.getKey(); if (e.getHash() == hash && entryKey != null && map.keyEquivalence.equivalent(key, entryKey)) { // We found an existing entry. ValueReference
valueReference = e.getValueReference(); V entryValue = valueReference.get(); if (entryValue == null) { ++modCount; if (valueReference.isActive()) { enqueueNotification(key, hash, valueReference, RemovalCause.COLLECTED); setValue(e, key, value, now); newCount = this.count; // count remains unchanged } else { setValue(e, key, value, now); newCount = this.count + 1; } this.count = newCount; // write-volatile evictEntries(); return null; } else if (onlyIfAbsent) { // Mimic // "if (!map.containsKey(key)) ... // else return map.get(key); recordLockedRead(e, now); return entryValue; } else { // clobber existing entry, count remains unchanged ++modCount; enqueueNotification(key, hash, valueReference, RemovalCause.REPLACED); setValue(e, key, value, now); evictEntries(); return entryValue; } } } // Create a new entry. ++modCount; ReferenceEntry
newEntry = newEntry(key, hash, first); setValue(newEntry, key, value, now); table.set(index, newEntry); newCount = this.count + 1; this.count = newCount; // write-volatile evictEntries(); return null; } finally { unlock(); postWriteCleanup(); } }

  就这样,基于guava的二级缓存功能就搞定了。

老话:感谢你遇到的每一个bug!

转载于:https://www.cnblogs.com/yougewe/p/10892173.html

你可能感兴趣的文章
Scala的类和对象
查看>>
table相关的选择器 & children()与find()的区别 & 选择器eq(n)与nth-child(n)的差异
查看>>
Windows Azure Platform AppFabric
查看>>
springmvc常用注解标签详解
查看>>
Linux之ssh服务介绍
查看>>
Sql语句里的递归查询(转)
查看>>
[JAVA]《Java 核心技术》(一)
查看>>
libevent机制
查看>>
rabbit ip登录
查看>>
呼叫器
查看>>
Hadoop Archives
查看>>
.Net基础篇_学习笔记_第六天_for循环语法_正序输出和倒序输出
查看>>
Java 十进制和十六制之间的转化(负数的处理)
查看>>
反射那些事儿——Java动态装载和反射技术
查看>>
Hive中的日志
查看>>
Wingdings 2 符号编码对照表
查看>>
SVN的标准目录结构:trunk、branches、tags
查看>>
Initializing Spring root WebApplicationContext
查看>>
在线CSS圆角生成器
查看>>
Java基础知识总结--反射
查看>>